Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38592053

RESUMO

Electronic skin (e-skin) is showing a huge potential in human-computer interaction, intelligent robots, human health, motion monitoring, etc. However, it is still challenging for e-skin to realize distinguishable detection of stretching strain, vertical pressure, and temperature through a simple noncoupling structure design. Here, a stretchable multimodal biomimetic e-skin was fabricated by integrating layer-by-layer self-assembled crumpled reduced graphene oxide/multiwalled carbon nanotubes film on natural rubber (RGO/MWCNTs@NR) as stretchable conductive electrodes and polyacrylamide/NaCl ionogel as a dielectric layer into an ionotropic capacitive mechanoreceptor. Unlike natural skin receptors, the sandwich-like stretchable ionogel mechanoreceptor possessed a distinct ionotropic capacitive behavior for strain and pressure detection. The results showed that the biomimetic e-skin displayed a negative capacitance change with superior stretchability (0-300%) and a high gauge factor of 0.27 in 180-300% strain, while exhibiting a normal positive piezo-capacitance behavior in vertical pressure range of 0-15 kPa with a maximal sensitivity of 1.759 kPa-1. Based on this feature, the biomimetic e-skin showed an excellent synchronous detection capability of planar strain and vertical pressure in practical wearable applications such as gesture recognition and grasping movement detection without a complicated mathematical or signal decoupling process. In addition, the biomimetic e-skin exhibited a quantifiable linear responsiveness to temperature from 20-90 °C with a temperature coefficient of 0.55%/°C. These intriguing properties gave the biomimetic e-skin the ability to perform a complete function similar to natural skin but beyond its performance for future wearable devices and artificial intelligence devices.

2.
Eur Respir Rev ; 33(171)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38537947

RESUMO

COPD poses a significant global public health challenge, primarily characterised by irreversible airflow restriction and persistent respiratory symptoms. The hallmark pathology of COPD includes sustained airway inflammation and the eventual destruction of lung tissue structure. While multiple risk factors are implicated in the disease's progression, the underlying mechanisms remain largely elusive. The perpetuation of inflammation is pivotal to the advancement of COPD, emphasising the importance of investigating these self-sustaining mechanisms for a deeper understanding of the pathogenesis. Autoimmune responses constitute a critical mechanism in maintaining inflammation, with burgeoning evidence pointing to their central role in COPD progression; yet, the intricacies of these mechanisms remain inadequately defined. This review elaborates on the evidence supporting the presence of autoimmune processes in COPD and examines the potential mechanisms through which autoimmune responses may drive the chronic inflammation characteristic of the disease. Moreover, we attempt to interpret the clinical manifestations of COPD through autoimmunity.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Autoimunidade , Pulmão/patologia , Fatores de Risco , Inflamação
3.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38310083

RESUMO

Chest tightness variant asthma (CTVA) is an atypical form of asthma with chest tightness as the sole or predominant symptom. The underlying receptors for chest tightness may be bronchial C-fibers or rapidly adapting receptors. The nerve impulses are transmitted via the vagus nerve and processed in different regions of the cerebral cortex. Chest tightness is associated with sensory perception, and CTVA patients may have a heightened ability to detect subtle changes in lung function, which may be unrelated to respiratory muscle activity, lung hyperinflation, or mechanical loading of the respiratory system. The airway inflammation, pulmonary ventilation dysfunction (especially involving small airways), and airway hyperresponsiveness may underlie the sensation of chest tightness. CTVA patients are prone to comorbid anxiety and depression, which share similar central nervous system processing pathways with dyspnea, suggesting a possible neurological basis for the development of CTVA. This article examines the recognition and mechanisms of chest tightness symptoms, and explores the pathogenesis of CTVA, focusing on its association with the airway inflammation, ventilation dysfunction, airway hyperresponsiveness, and psychosocial factors.

4.
Lancet Reg Health West Pac ; 45: 101021, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38352242

RESUMO

Background: The prevalence, epidemiological and clinical heterogeneities, and impact profiles of individuals with preserved ratio impaired spirometry (PRISm), pre-COPD, young COPD, and mild COPD in general Chinese population were not known yet. Methods: Data were obtained from the China Pulmonary Health study (2012-2015), a nationally representative cross-sectional survey that recruited 50,991 adults aged 20 years or older. Definitions of the four early disease status were consistent with the latest publications and the Global Initiative for Chronic Obstructive Lung Disease criteria. Findings: The age-standardised prevalences of PRISm, pre-COPD, young COPD, and mild COPD were 5.5% (95% confidence interval, 4.3-6.9), 7.2% (5.9-8.8), 1.1% (0.7-1.8), and 3.1% (2.5-3.8), respectively. In summary, mild COPD was under more direct or established impact factor exposures, such as older age, male gender, lower education level, lower family income, biomass use, air pollution, and more accumulative cigarette exposures; young COPD and pre-COPD experienced more personal and parents' events in earlier lives, such as history of bronchitis or pneumonia in childhood, frequent chronic cough in childhood, parental history of respiratory diseases, passive smoke exposure in childhood, and mother exposed to passive smoke while pregnant; pre-COPD coexisted with heavier symptoms and comorbidities burdens; young COPD exhibited worse airway obstruction; and most of the four early disease status harbored small airway dysfunction. Overall, older age, male gender, lower education level, living in the urban area, occupational exposure, frequent chronic cough in childhood, more accumulated cigarette exposure, comorbid with cardiovascular disease and gastroesophageal reflux disease were all associated with increased presence of the four early COPD status; different impact profiles were additionally observed with distinct entities. Over the four categories, less than 10% had ever taken pulmonary function test; less than 1% reported a previously diagnosed COPD; and no more than 13% had received pharmaceutical treatment. Interpretation: Significant heterogeneities in prevalence, epidemiological and clinical features, and impact profiles were noted under varied defining criteria of early COPD; a unified and validated definition for an early disease stage is warranted. Closer attention, better management, and further research need to be administrated to these population. Funding: Chinese Academy of Medical Sciences Institute of Respiratory Medicine Grant for Young Scholars (No. 2023-ZF-9); China International Medical Foundation (No. Z-2017-24-2301); Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (No. 2021-I2M-1-049); National High Level Hospital Clinical Research Funding (No. 2022-NHLHCRF-LX-01); Major Program of National Natural Science Foundation of China (No. 82090011).

5.
JMIR Public Health Surveill ; 10: e53170, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386387

RESUMO

BACKGROUND: Maternal smoking during pregnancy (MSDP) is a known risk factor for offspring developing chronic obstructive pulmonary disease (COPD), but the underlying mechanism remains unclear. OBJECTIVE: This study aimed to explore whether the increased COPD risk associated with MSDP could be attributed to tobacco dependence (TD). METHODS: This case-control study used data from the nationwide cross-sectional China Pulmonary Health study, with controls matched for age, sex, and smoking status. TD was defined as smoking within 30 minutes of waking, and the severity of TD was assessed using the Fagerstrom Test for Nicotine Dependence. COPD was diagnosed when the ratio of forced expiratory volume in 1 second to forced vital capacity was <0.7 in a postbronchodilator pulmonary function test according to the 2017 Global Initiative for Chronic Obstructive Lung Disease criteria. Logistic regression was used to examine the correlation between MSDP and COPD, adjusting for age, sex, BMI, educational attainment, place of residence, ethnic background, occupation, childhood passive smoking, residential fine particulate matter, history of childhood pneumonia or bronchitis, average annual household income, and medical history (coronary heart disease, hypertension, and diabetes). Mediation analysis examined TD as a potential mediator in the link between MSDP and COPD risk. The significance of the indirect effect was assessed through 1000 iterations of the "bootstrap" method. RESULTS: The study included 5943 participants (2991 with COPD and 2952 controls). Mothers of the COPD group had higher pregnancy smoking rates (COPD: n=305, 10.20%; controls: n=211, 7.10%; P<.001). TD was more prevalent in the COPD group (COPD: n=582, 40.40%; controls: n=478, 33.90%; P<.001). After adjusting for covariates, MSDP had a significant effect on COPD (ß=.097; P<.001). There was an association between MSDP and TD (ß=.074; P<.001) as well as between TD and COPD (ß=.048; P=.007). Mediation analysis of TD in the MSDP-COPD association showed significant direct and indirect effects (direct: ß=.094; P<.001 and indirect: ß=.004; P=.03). The indirect effect remains present in the smoking population (direct: ß=.120; P<.001 and indirect: ß=.002; P=.03). CONCLUSIONS: This study highlighted the potential association between MSDP and the risk of COPD in offspring, revealing the mediating role of TD in this association. These findings contribute to a deeper understanding of the impact of prenatal tobacco exposure on lung health, laying the groundwork for the development of relevant prevention and treatment strategies.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Tabagismo , Feminino , Gravidez , Humanos , Estudos de Casos e Controles , Estudos Transversais , Fumar , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/etiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38288346

RESUMO

Background: Macrophage-derived matrix metalloproteinase 12 (MMP12) can cause destruction of lung tissue structure and plays a significant role in the development and progression of chronic obstructive pulmonary disease (COPD). MTOR is a serine/threonine kinase that plays a crucial role in cell growth and metabolism. The activity of MTOR in the lung tissues of COPD patients also shows significant changes. However, it is unclear whether MTOR can regulate the development and progression of COPD by controlling MMP12. This study primarily investigates whether MTOR in macrophages can affect the expression of MMP12 and participate in the progression of COPD. Methods: We tested the changes in MTOR activity in macrophages exposed to cigarette smoke (CS) both in vivo and in vitro. Additionally, we observed the effect of MTOR on the expression of MMP12 in macrophages and on lung tissue inflammation and structural damage in mice, both in vivo and in vitro, using MTOR inhibitors or gene knockout mice. Finally, we combined inhibitor treatment with gene knockout to demonstrate that MTOR primarily mediates the expression of MMP12 through the NF-κB signaling pathway. Results: Exposure to CS can enhance MTOR activity in mouse alveolar macrophages. Inhibiting the activity of MTOR or suppressing its expression leads to increased expression of MMP12. Myeloid-specific knockout of MTOR expression can promote the occurrence of CS-induced pulmonary inflammation and emphysema in mice. Inhibiting the activity of NF-κB can eliminate the effect of MTOR on MMP12. Conclusion: Macrophage MTOR can reduce the expression of MMP12 by inhibiting NF-κB, thereby inhibiting the occurrence of COPD inflammation and destruction of lung tissue structure. Activating the activity of macrophage MTOR may be beneficial for the treatment of COPD.


Assuntos
Fumar Cigarros , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Serina-Treonina Quinases TOR , Animais , Humanos , Camundongos , Fumar Cigarros/efeitos adversos , Inflamação/metabolismo , Pulmão , Macrófagos/metabolismo , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Pneumonia/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/complicações , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Produtos do Tabaco
7.
Adv Sci (Weinh) ; 11(5): e2304755, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010945

RESUMO

Tumor heterogeneity and its drivers impair tumor progression and cancer therapy. Single-cell RNA sequencing is used to investigate the heterogeneity of tumor ecosystems. However, most methods of scRNA-seq amplify the termini of polyadenylated transcripts, making it challenging to perform total RNA analysis and somatic mutation analysis.Therefore, a high-throughput and high-sensitivity method called snHH-seq is developed, which combines random primers and a preindex strategy in the droplet microfluidic platform. This innovative method allows for the detection of total RNA in single nuclei from clinically frozen samples. A robust pipeline to facilitate the analysis of full-length RNA-seq data is also established. snHH-seq is applied to more than 730 000 single nuclei from 32 patients with various tumor types. The pan-cancer study enables it to comprehensively profile data on the tumor transcriptome, including expression levels, mutations, splicing patterns, clone dynamics, etc. New malignant cell subclusters and exploring their specific function across cancers are identified. Furthermore, the malignant status of epithelial cells is investigated among different cancer types with respect to mutation and splicing patterns. The ability to detect full-length RNA at the single-nucleus level provides a powerful tool for studying complex biological systems and has broad implications for understanding tumor pathology.


Assuntos
Ecossistema , Neoplasias , Humanos , Análise de Sequência de RNA/métodos , RNA-Seq/métodos , Neoplasias/genética , RNA/genética
8.
J Inflamm Res ; 16: 5715-5728, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053607

RESUMO

Purpose: This study aimed to explore the effect of Rapamycin (Rapa) in Staphylococcus aureus (S. aureus) pneumonia and clarify its possible mechanism. Methods: We investigated the effects of Rapa on S. aureus pneumonia in mouse models and in macrophages cultured in vitro. Two possible mechanisms were investigated: the mTOR-RPS6 pathway phosphorylation and phagocytosis. Furthermore, for the mechanism verification in vivo, mice with specific Mtor knockout in myeloid cells were constructed for pneumonia models. Results: Rapa exacerbated S. aureus pneumonia in mouse models, promoting chemokines secretion and inflammatory cells infiltration in lung. In vitro, Rapa upregulated the secretion of chemokines and cytokines in macrophages induced by S. aureus. Mechanistically, the mTOR-ribosomal protein S6 (RPS6) pathway in macrophages was phosphorylated in response to S. aureus infection, and the inhibition of RPS6 phosphorylation upregulated the inflammation level. However, Rapa did not increase the phagocytic activity. Accordingly, mice with specific Mtor knockout in myeloid cells experienced more severe S. aureus pneumonia. Conclusion: Rapa exacerbates S. aureus pneumonia by increasing the inflammatory levels of macrophages. Inhibition of mTOR-RPS6 pathway upregulates the expression of cytokines and chemokines in macrophages, thus increases inflammatory cells infiltration and exacerbates tissue damage.

9.
Cell Death Dis ; 14(12): 844, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114479

RESUMO

Increased levels of cytosolic DNA in lung tissues play an important role in acute lung injury. However, the detailed mechanisms involved remain elusive. Here, we found that cyclic GMP-AMP synthase (cGAS, a cytosolic DNA sensor) expression was increased in airway epithelium in response to increased cytosolic DNA. Conditional deletion of airway epithelial cGAS exacerbated acute lung injury in mice, cGAS knockdown augmented LPS-induced production of interleukin (IL)-6 and IL-8. Mechanically, deletion of cGAS augmented expression of phosphorylated CREB (cAMP response element-binding protein), and cGAS directly interacted with CREB via its C-terminal domain. Furthermore, CREB knockdown rescued the LPS-induced excessive inflammatory response caused by cGAS deletion. Our study demonstrates that airway epithelial cGAS plays a protective role in acute lung injury and confirms a non-canonical cGAS-CREB pathway that regulates the inflammatory responses in airway epithelium to mediate LPS-induced acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , DNA , Interleucina-6 , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais
10.
BMC Pulm Med ; 23(1): 258, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452319

RESUMO

BACKGROUND: Neutrophils consume a large amount of energy when performing their functions. Compared with other white blood cells, neutrophils contain few mitochondria and mainly rely on glycolysis and gluconeogenesis to produce ATP. The inflammatory site is hypoxic and nutrient poor. Our aim is to study the role of abnormal adenosine metabolism of neutrophils in the asthmatic airway inflammation microenvironment. METHOD: In this study, an asthma model was established by intratracheal instillation of Aspergillus fumigatus extract in Ecto-5'-Nucleotidase (CD73) gene-knockout and wild-type mice. Multiple analyses from bronchoalveolar lavage fluid (BALF) were used to determine the levels of cytokines and chemokines. Immunohistochemistry was used to detect subcutaneous fibrosis and inflammatory cell infiltration. Finally, adenosine 5'-(α, ß-methylene) diphosphate (APCP), a CD73 inhibitor, was pumped subcutaneously before Aspergillus attack to observe the infiltration of inflammatory cells and subcutaneous fibrosis to clarify its therapeutic effect. RESULT: PAS staining showed that CD73 knockout inhibited pulmonary epithelial cell proliferation and bronchial fibrosis induced by Aspergillus extract. The genetic knockdownof CD73 significantly reduced the production of Th2 cytokines, interleukin (IL)-4, IL-6, IL-13, chemokine (C-C motif) ligand 5 (CCL5), eosinophil chemokine, neutrophil IL-17, and granulocyte colony-stimulating factor (G-CSF). In addition, exogenous adenosine supplementation increased airway inflammation. Finally, the CD73 inhibitor APCP was administered to reduce inflammation and subcutaneous fibrosis. CONCLUSION: Elevated adenosine metabolism plays an inflammatory role in asthma, and CD73 could be a potential therapeutic target for asthma.


Assuntos
Asma , Neutrófilos , Animais , Camundongos , Neutrófilos/metabolismo , Aspergillus fumigatus/metabolismo , Adenosina/metabolismo , Asma/terapia , Citocinas/metabolismo , Inflamação , Quimiocinas/metabolismo , Líquido da Lavagem Broncoalveolar , Extratos Vegetais , Remodelação das Vias Aéreas
11.
Cell Rep ; 42(6): 112586, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37267109

RESUMO

The nuclear factor κB (NF-κB) pathway plays essential roles in innate and adaptive immunity, but little is known how NF-κB signaling is compartmentalized and spatiotemporally activated in the cytoplasm. Here, we show that the lipogenesis signal cascade Scap-SREBP1-S1P/S2P orchestrates the homeostasis and spatiotemporal activation of NF-κB. SREBP cleavage-activating protein (Scap) and sterol regulatory element-binding protein 1 (SREBP1) form a super complex with inhibitors of NF-κB α (IκBα) to associate NF-κB close to the endoplasmic reticulum (ER). Upon lipopolysaccharide (LPS) stimulation, Scap transports the complex to the Golgi apparatus, where SREBP1 is cleaved by site-1 protease (S1P)/S2P, liberating IκBα for IκB kinase (Ikk)-mediated phosphorylation and subsequent activation of NF-κB. Loss of Scap or inhibition of S1P or S2P diminishes, while SREBP1 deficiency augments, LPS-induced NF-κB activation and subsequent inflammatory responses. Our results reveal the Scap-SREBP1 complex as an additional cytoplasmic checkpoint for NF-κB homeostasis and unveil the Golgi apparatus as the optimal cellular platform for NF-κB activation, providing insights into the crosstalk between lipogenesis signaling and immunity.


Assuntos
Lipogênese , NF-kappa B , Homeostase , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Humanos , Animais , Camundongos
12.
J Allergy Clin Immunol ; 152(3): 622-632, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37178731

RESUMO

BACKGROUND: Cough-variant asthma (CVA) may respond differently to antiasthmatic treatment. There are limited data on the heterogeneity of CVA. OBJECTIVE: We aimed to classify patients with CVA using cluster analysis based on clinicophysiologic parameters and to unveil the underlying molecular pathways of these phenotypes with transcriptomic data of sputum cells. METHODS: We applied k-mean clustering to 342 newly physician-diagnosed patients with CVA from a prospective multicenter observational cohort using 10 prespecified baseline clinical and pathophysiologic variables. The clusters were compared according to clinical features, treatment response, and sputum transcriptomic data. RESULTS: Three stable CVA clusters were identified. Cluster 1 (n = 176) was characterized by female predominance, late onset, normal lung function, and a low proportion of complete resolution of cough (60.8%) after antiasthmatic treatment. Patients in cluster 2 (n = 105) presented with young, nocturnal cough, atopy, high type 2 inflammation, and a high proportion of complete resolution of cough (73.3%) with a highly upregulated coexpression gene network that related to type 2 immunity. Patients in cluster 3 (n = 61) had high body mass index, long disease duration, family history of asthma, low lung function, and low proportion of complete resolution of cough (54.1%). TH17 immunity and type 2 immunity coexpression gene networks were both upregulated in clusters 1 and 3. CONCLUSION: Three clusters of CVA were identified with different clinical, pathophysiologic, and transcriptomic features and responses to antiasthmatics treatment, which may improve our understanding of pathogenesis and help clinicians develop individualized cough treatment in asthma.


Assuntos
Antiasmáticos , Asma , Feminino , Masculino , Humanos , Tosse , Estudos Prospectivos , Fenótipo , Antiasmáticos/uso terapêutico
13.
Cancer Lett ; 561: 216140, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36948240

RESUMO

Met proto-oncogene exon 14 skipping (METex14) mutations are targetable driver genes in approximately 3% of non-small-cell lung cancers (NSCLCs). Ensartinib, a type Ia MET inhibitor, is a multi-kinase inhibitor that has been approved for ALK-positive NSCLCs. Ensartinib was administered for compassionate use (cohort 1) and in a phase II clinical trial (cohort 2) to patients with METex14 mutant NSCLCs, with ORR as a primary endpoint. Molecular simulation was conducted to evaluate ensartinib c-MET interaction, and cell lines, patient-derived organoids (PDOs), and xenograft models were used to test the effectiveness of ensartinib. Among 29 evaluable patients, the ORR and DCR of ensartinib were 67% and 94% in cohort 1, and 73% and 91% in cohort 2. The median DoR was 6.8 months and median PFS was 6.1 months in the total population. Rash was the most common drug-related adverse event, and peripheral edema of any grade was reported in only 9% patients. Molecular simulations indicated favorable binding of ensartinib to c-MET. The kinase assay demonstrated an IC50 of 7.9 nM of ensartinib against METex14 protein. In vitro, Hs746T (METex14 mutation) and EBC-1 (MET amplification) cells were sensitive to ensartinib, with IC50 values of 31 and 44 nM, respectively. Ensartinib exhibited comparable inhibitory effects on cell migration as crizotinib and tepotinib in both cell types. In vivo, ensartinib suppressed the growth of Hs746T cells. Ensartinib also potently inhibited the viability of PDOs. Overall, Ensartinib exhibited substantial antitumor effects against METex14 mutant NSCLCs in preclinical and clinical trials, with relatively low peripheral edema rates.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Crizotinibe , Éxons , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas c-met/genética , Animais
15.
Kidney Dis (Basel) ; 9(1): 26-38, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36756082

RESUMO

Background: Since their discovery, around 150 years, eosinophils research has been a field of changing perspective, and new directions are emerging since then. Summary: Initially, eosinophils were perceived as terminally differentiated cytotoxic effector cells. Clearly, eosinophils are capable of playing functions other than immune responses, which is not surprising given their intricate interactions with pathogens as well as other circulating leukocytes. Attempts to comprehend the eosinophil biology and functions have yielded remarkable insights into their roles in human health and sickness. The use of FDA-approved eosinophils-targeting biologics has provided exciting opportunities to directly explore the contributions of eosinophils in disease etiology in humans. Key Messages: In this review, we will focus on the eosinophils' lifecycle and discuss the current state of knowledge from mouse models and retrospective human studies demonstrating eosinophils' roles in the pathogenesis of human diseases such as asthma, cancer, and kidney disorders. Despite three recently approved anti-eosinophil agents, a number of key questions and challenges remain far from settled, thereby generating opportunity to further explore this enigmatic cell. A comprehensive understanding of eosinophils biology and function will surely aid in developing improved therapeutic strategies against eosinophils-associated disorders.

16.
Respir Res ; 23(1): 243, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096782

RESUMO

BACKGROUND: Asthma is a heterogeneous disease with variable symptoms, which presents with cough either as the sole or predominant symptom with or without wheezing. We compared the clinical and pathophysiological characteristics of cough predominant asthma (CPA), cough variant asthma (CVA) and classic asthma (CA) in order to determine any differential phenotypic traits. METHODS: In 20 clinics across China, a total of 2088 patients were finally recruited, including 327 CVA, 1041 CPA and 720 CA patients. We recorded cough and wheezing visual analogue scale, Leicester cough questionnaire (LCQ) and asthma control test scores. Fractional exhaled nitric oxide (FeNO), induced sputum cell counts, and capsaicin cough challenge were also measured and compared. RESULTS: CPA patients more frequently presented with cough as the initial symptom, and laryngeal symptoms (p < 0.001), had less symptoms related with rhinitis/sinusitis and gastroesophageal reflux (p < 0.05) than CA patients. Comorbidities including rhinitis and gastroesophageal reflux were similar, while the proportion of COPD and bronchiectasis was higher in CA patients. There were no differences in FeNO levels, sputum eosinophil and neutrophil counts, FEV1 (%pred) decreased from CVA to CPA to CA patients (p < 0.001). Cough sensitivity was higher in CVA and CPA compared to CA (p < 0.001), and was positively correlated with LCQ scores. CONCLUSIONS: CVA, CPA and CA can be distinguished by the presence of laryngeal symptoms, cough sensitivity and airflow obstruction. Asthma-associated chronic cough was not associated with airway inflammation or comorbidities in our cohort. Trial registration The Chinese Clinical Trial Registration Center, ChiCTR-POC-17011646, 13 June 2017.


Assuntos
Asma , Refluxo Gastroesofágico , Rinite , Asma/complicações , Asma/diagnóstico , Asma/epidemiologia , Tosse/diagnóstico , Tosse/epidemiologia , Humanos , Óxido Nítrico , Fenótipo , Estudos Prospectivos , Sons Respiratórios , Rinite/complicações , Inquéritos e Questionários
18.
Cell Discov ; 8(1): 80, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35973984

RESUMO

Severe eosinophilic asthma (SEA) is a therapy-resistant respiratory condition with poor clinical control. Treatment efficacy and patient compliance of current therapies remain unsatisfactory. Here, inspired by the remarkable success of chimeric antigen receptor-based cellular adoptive immunotherapies demonstrated for the treatment of a variety of malignant tumors, we engineered a cytokine-anchored chimeric antigen receptor T (CCAR-T) cell system using a chimeric IL-5-CD28-CD3ζ receptor to trigger T-cell-mediated killing of eosinophils that are elevated during severe asthma attacks. IL-5-anchored CCAR-T cells exhibited selective and effective killing capacity in vitro and restricted eosinophil differentiation with apparent protection against allergic airway inflammation in two mouse models of asthma. Notably, a single dose of IL-5-anchored CCAR-T cells resulted in persistent protection against asthma-related conditions over three months, significantly exceeding the typical therapeutic window of current mAb-based treatments in the clinics. This study presents a cell-based treatment strategy for SEA and could set the stage for a new era of precision therapies against a variety of intractable allergic diseases in the future.

19.
ERJ Open Res ; 8(3)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35898809

RESUMO

Background: Chronic cough is a common complaint, but there are no population-based data on its burden in China. We determined the prevalence of chronic cough and its impact on health status in adults stratified by sex, age and the diagnosis of COPD or the presence of small airway dysfunction (SAD). Methods: A representative sample of 57 779 Chinese adults aged 20 years or older was recruited and pulmonary function test was measured. Chronic cough was defined as cough lasting for >3 months in each year. Quality of life was assessed by the 12-item Short Form Health Survey (SF-12), and self-reported history of hospital visits was recorded. Results: Chronic cough was found in 3.6% (95% CI 3.1-4.1) of Chinese adults, 2.4% (95% CI 1.9-3.1) of those aged 20-49 years and 6.0% (95% CI 5.3-6.8) of those aged 50 years or older. Individuals with chronic cough had an impaired physical component summary (PCS) score of the SF-12 (p<0.0001) and more emergency visits (p=0.0042) and hospital admissions (p=0.0002). Furthermore, the impact of chronic cough on PCS score was more significant in those aged 50 years or older, or with COPD (p=0.0018 or 0.0002, respectively), with the impact on hospital admission being more significant in those with COPD or with SAD (p=0.0026 or 0.0065, respectively). Conclusions: Chronic cough is prevalent in China and is associated with a poorer health status, especially in individuals aged 50 years or older and those with the diagnosis of COPD or SAD.

20.
Cell Discov ; 8(1): 44, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35570218

RESUMO

Chemokine receptors are a family of G-protein-coupled receptors with key roles in leukocyte migration and inflammatory responses. Here, we present cryo-electron microscopy structures of two human CC chemokine receptor-G-protein complexes: CCR2 bound to its endogenous ligand CCL2, and CCR3 in the apo state. The structure of the CCL2-CCR2-G-protein complex reveals that CCL2 inserts deeply into the extracellular half of the transmembrane domain, and forms substantial interactions with the receptor through the most N-terminal glutamine. Extensive hydrophobic and polar interactions are present between both two chemokine receptors and the Gα-protein, contributing to the constitutive activity of these receptors. Notably, complemented with functional experiments, the interactions around intracellular loop 2 of the receptors are found to be conserved and play a more critical role in G-protein activation than those around intracellular loop 3. Together, our findings provide structural insights into chemokine recognition and receptor activation, shedding lights on drug design targeting chemokine receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...